コラム 人と星とともにある数学 数学・数学者

集合の計算|Pythonで数学を学ぼう! 第6回

2月 26, 2021

集合とリストを比べる

前回は素数判定プログラム(prime1からprime 4)を紹介しました。

素数といえば、エラトステネスのふるいが有名です。Pythonでエラトステネスのふるいをコーディングすることを目指します。

そこで活躍するのがPythonによる集合の計算です。インタラクティブモードで確認していきます。

リストは[]を用いてデータを囲みます。データをインデックスで管理することができます。

>>> L = ['a', 'a', 'a', 'b', 'b', 'c']
>>> L
>>> ['a', 'a', 'a', 'b', 'b', 'c']
>>> L[0]
>>> 'a'
>>> L[5]
>>> 'c'
>>> print(type(L))
>>> <class 'list'>

それに対して、集合は{}を用いてデータを囲みます。上と同じデータを{}で囲んでみます。

>>> A = {'a', 'a', 'a', 'b', 'b', 'c'}
>>> A
>>> {'a', 'c', 'b'}
>>> print(type(A))
>>> <class 'set'>

これからわかるように、Pythonの集合は要素の重複を自動で排除してくれる便利な機能を持っています。

そして、{'a', 'c', 'b'}からわかるように、集合の要素には順序の情報が付随しません。集合生成時に指定した順序とは異なる順番で集合の要素が出力されます。

空集合の生成

>>> P = {}
>>> print(P)
>>> {}
>>> print(type(P))
>>> <class 'dict'>

空集合は{}と思いきや、{}は辞書dict型となります。
空集合を生成するにはset()を用います。

>>> Q = set()
>>> print(Q)
>>> set()
>>> print(type(Q))
>>> <class 'set'>

たしかに集合set型です。

集合の生成

2つの集合を生成し、集合演算を確認してみます。和・差・積・対称差・一致・不一致・包含関係といった演算ができます。

先に生成した集合{'a', 'c', 'b'}はset()を用いてset('abc')とすれば生成できます。

>>> A = set('abc')
>>> B = set('bcde')
>>> print(A)
>>> {'a', 'c', 'b'}
>>> print(B)
>>> {'e', 'c', 'd', 'b'}

この集合AとBの和・差・積を計算してみます。

集合の和

2つの集合の和集合A∪B(AまたはB)は、A|Bで得られます。

>>> A|B
>>> {'a', 'c', 'e', 'd', 'b'}

集合の差

2つの集合の差集合は、A-Bで得られます。

>>> A-B
>>> {'a'}
>>> B-A
>>> {'d', 'e'}

集合の積

2つの集合の積集合A∩B(AかつB)は、A&Bで得られます。
>>> A&B
>>> {'c', 'b'}

比較演算

Pythonには集合同士の比較をする比較演算が装備されています。
つぎの3つの集合を準備します。

>>> A = set('ab')
>>> B = set('abcde')
>>> C = set('daecb')
>>> A
>>> {'a', 'b'}
>>> B
>>> {'a', 'c', 'e', 'b', 'd'}
>>> C
>>> {'c', 'a', 'e', 'b', 'd'}

集合Aと集合Bが等しいか否かを調べるにはA == Bとします。
>>> A == B
>>> False

集合Aと集合Bは完全一致(A == B)しないので、Falseが返されます。

>>> B == C
>>> True

集合Bと集合Cは完全一致(B == C)するので、Trueが返されます。

集合Aと集合Bの関係は「集合Aは集合Bの部分集合である」といい、A⊂Bと表します。

>>> A < B
>>> True
>>> B < A
>>> False

集合Bと集合Cの関係はB = Cです。

>>> B < C
>>> False
>>> B <= C
>>> True

通常、数学では「部分集合」という用語には等しい場合が含まれます。A=Bのとき、AはBの部分集合といいます(AはBに含まれるからです)。

上の計算から分かるようにPythonではB < CにB = Cは含まれないので、B<Cは部分集合B⊂Cを表しません。部分集合B⊂Cを判定するにはB<=Cとする必要があります。

次回はset()を用いて素数をリストアップするエラトステネスのふるいをコーディングしてみます。

記事の評価をお願いします!

  • この記事を書いた人
  • 最新記事

桜井進(さくらいすすむ)様

1968年山形県生まれ。 サイエンスナビゲーター®。株式会社sakurAi Science Factory 代表取締役CEO。 (略歴) 東京工業大学理学部数学科卒、同大学大学院院社会理工学研究科博士課程中退。 東京理科大学大学院非常勤講師。 理数教育研究所Rimse「算数・数学の自由研究」中央審査委員。 高校数学教科書「数学活用」(啓林館)著者。 公益財団法人 中央教育研究所 理事。 国土地理院研究評価委員会委員。 2000年にサイエンスナビゲーターを名乗り、数学の驚きと感動を伝える講演活動をスタート。東京工業大学世界文明センターフェローを経て現在に至る。 子どもから大人までを対象とした講演会は年間70回以上。 全国で反響を呼び、テレビ・新聞・雑誌など様々なメディアに出演。 著書に『感動する!数学』『わくわく数の世界の大冒険』『面白くて眠れなくなる数学』など50冊以上。 サイエンスナビゲーターは株式会社sakurAi Science Factoryの登録商標です。

-コラム, 人と星とともにある数学, 数学・数学者
-

© 2021 株式会社インフォマティクス